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Abstract

1. Bayesian methods have been developed for inferring the true year of extinction
of a species from sighting records that have both certain and uncertain sight-
ings. These methods typically make the restrictive assumption that all sighting
types (i.e. certain, valid uncertain, invalid uncertain) derive from independent
homogeneous Poisson processes.

2. In this study, the constant rate assumption in the homogeneous Poisson process
is relaxed by allowing certain and uncertain sightings to follow independent non-
homogeneous Poisson processes. The model can thus identify whether or not
any of the sighting rates were increasing, decreasing or constant. In addition, a
change-point is introduced to model the uncertain sightings, where the sighting
rates before and after the change-point vary.

3. We have used Markov Chain Monte Carlo (MCMC) sampling to generate the
posterior distributions for model parameters including species extinction time.
The proposed method was applied to the sighting records of the black-footed
ferret (Mustela nigripes) and the Ivory-billed Woodpecker (IBW; Campephilus
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principalis) species.
4. Based on a hypothesis test, the results of the model indicate that the species

both species have gone extinct and the time this occurred is inferred. Moreover, a
decline in the certain sighting rate was also inferred for both these species, possibly
indicating the decrease in the species abundance as it converges to extinction.
Thus, earlier model that assumes a constant sighting rate may well be biased.
Uncertain sightings rates for the IBW were found to increase before extinction
(indicating possibly some additional ecological attention received near extinction)
and remained constant after extinction.

Keywords: Non-homogeneous Poisson processes, Bayesian modeling, Extinction year, Sight-
ing record, Uncertain sightings, change-point

1 Introduction
Continued ongoing loss of global biodiversity is one of the most pressing contemporary eco-
logical problems that threatens valuable ecosystem services and human well-being (Ceballos
et al. 2010; Dirzo & Raven 2003; Mace et al. 2012; Daily & Matson 2008; Ehrlich & Ehrlich
2013; Barnosky et al. 2011). Theoretical ecologists have therefore taken great interest in
studying processes that lead to species extinctions, from complex spatio-temporal models
to dealing with methods that infer from empirical data that predict whether a species has
become extinct or not. It is the latter methods that will be of concern to us here. The date
of extinction, or the time of the disappearance of the last individual of a species, is rarely
observed and even harder to detect. Therefore, where-ever possible, any inference concerning
the extinction of a species should be based on a variety of information sources. This includes
time series of historical sightings (i.e. sighting records), the effort expended in searching for
the species, change in abundance over time (i.e. population trajectories), potential remaining
habitat and its relationship to abundance, the severity and extent of processes threatening
species, and intrinsic taxon information (e.g. life-history traits) (Boakes et al. 2015). Ideally,
we would like to use all of this information when attempting to infer whether a species has
gone extinct or not. However, in reality the only available data is often just restricted to
time series of sightings.

Sighting history provides fundamental knowledge about a species existence and also the pos-
sibility of its extinction. However, extinction becomes a certainty only when there are no
surviving individuals of the species, which is generally difficult or impossible to ascertain.
Thus the assessment of extinction can benefit from the development of probabilistic frame-
works (Elphick et al. 2010). A number of studies have developed methods to calculate an
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extinction probability based on the record of sightings of a species through time. A sighting
record typically contains mixed-certainty sightings, some being certain and others uncer-
tain. For example, observing an actual specimen of a species would be classified as a certain
sighting, while an ambiguous photograph would be classified as an uncertain sighting. Thus,
predicting the probability of a species being extinct from a sighting record ideally requires
allowing for both certain and uncertain sightings.

Working with uncertain sightings requires further terminology. While certain sightings may
confidently be considered always “valid”, uncertain sightings are either “valid” or “invalid”,
given we are not sure whether we have identified the species correctly or not. In practice, it
is impossible to know which of the uncertain sightings are valid and actually real, and which
are invalid and thus errors. The most straightforward approach when modeling both these
sighting types is to assume that the sighting rate of a species over time is constant for each
sighting type, i.e., for all certain, for all valid uncertain and for all invalid uncertain sightings
(Solow et al. 2012; Solow & Beet 2014; Lee et al. 2014; 2017). However, this constant sighting
rate assumption is often not always a realistic assumption, and this motivated Solow (1993)’s
test for extinction in a declining population. In this approach, sightings were modelled as
a non-stationary Poisson process with an exponentially declining rate function. But the
method was only formulated for dealing with sighting records having only certain sightings,
and which appear to have a decline in the sighting rate.

In this paper, we extend the work of Solow & Beet (2014) to develop a more general Bayesian
framework to infer the extinction year by relaxing the assumption of a constant sighting rate.
The new model assumes that the sightings follow a non-homogeneous Poisson process that
has an intensity function of Weibull hazard form, and often referred to as a Weibull process,
or more commonly, a power-law process (Rigdon & Basu 1989; Ho 1991; Rao et al. 2006).Our
new approach can detect if the sighting rate (certain/uncertain) is constant, decreasing or
increasing over the study period. It is important to have this flexibility in an extinction
model because, for example, the certain sighting rate can decline before extinction due to
declining abundance, or the uncertain sighting rate can increase due to significant attention
from the media. In this paper, it is assumed that the time of extinction can be viewed
as a change-point for the uncertain sightings. Hence, the rate of uncertain sightings can
be decreasing, increasing or constant after extinction regardless of their behaviour before
extinction.
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2 Model Development
Let N(t) ≥ 0 be the total number of sightings in the time interval [0, t), t ≥ 0. Then,
assuming that (N = {N(t) : t ≥ 0}) evolves according to a non-homogeneous Poisson
processes with rate given by λ(t), the mean of the process is given by:

E
(
N(t)

)
= m(t) =

∫ t

0
λ(s) ds. (1)

By the properties of the Poisson distribution, the probability of k sightings between time t
and (t+ s) is given by:

P (N(t+ s)−N(t) = k) = [
∫ t+s
t λ(s)ds]k

k! exp{−
∫ t+s

t
λ(s)ds}

= [m(t+ s)−m(t)]k
k! exp{−[m(t+ s)−m(t)]}.

(2)
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Figure 1: Certain sightings can evolve according to a homogeneous or non-homogeneous
Poisson process with rate given by λc(t). Uncertain sightings can also evolve according to a
Poisson process but with the presence of a change-point τE. The rate of the uncertain sight-
ings can either be λu1(t) or λu2(t) depending on whether t is before or after extinction. The
solid line indicates the homogeneous Poisson process, while the dashed (i.e. increasing rate)
and dotted (i.e. decreasing rate) horizontal lines indicate two different non-homogeneous
Poisson processes. Whether these non-homogeneous Poisson rates behave in a linear or
non-linear pattern depends on the rate function used.
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For a sighting record, let Nc(t) ≥ 0 and Nu(t) ≥ 0 be the number of certain sightings and
uncertain sightings in the time interval [0, t), t ≥ 0. We assume that the number of certain
sightings (Nc = {Nc(t) : t ≥ 0}) evolves according to a non-homogeneous Poisson process
with rate given by λc(t) in the interval 0 to τE, where τE is the time of extinction. While the
certain sightings must stop after the extinction time τE, the invalid uncertain sightings should
continue after extinction. The extinction time (τE) can be considered as a change-point for
uncertain sightings because before τE the uncertain sightings consists of both valid and
invalid uncertain sightings, but after τE there are only invalid uncertain sightings. Hence the
uncertain sightings are assumed to evolve according to a non-homogeneous Poisson processes
with the presence of the change-point τE ∈ (0,∞). Before extinction, the rate of uncertain
sighting is λu1(t), but this changes to λu2(t) after τE (see Fig. 1).

In the present case, the rate of certain sighting λc(t) is defined as follows:

λc(t) = (αc/σc)(t/σc)αc−1, t ≤ τE. (3)

The rate for uncertain sightings λu(t) is defined as follows with a change-point at τE:

λu(t) =

λu1(t) = (αu1/σu1)(t/σu1)αu1−1, t ≤ τE

λu2(t) = (αu2/σu2)(t/σu2)αu2−1, t > τE.
(4)

The rates of certain and uncertain sightings in Equations 3 and 4 are assumed to be of
the Weibull hazard function form, i.e., (α/σ)(t/σ)α−1, where σ and α are the scale and
shape parameters respectively. The Weibull rate function is a very flexible function that can
be adjusted to mimic real-world sighting rate behaviours, using its scale (σ) and shape (α)
parameters. For example, a Weibull shape parameter value less than one mimics a decreasing
sighting rate over time, while a value greater than one mimics an increasing sighting rate.
Because of the flexible shape and its ability to model a wide range of rates, the Weibull rate
function is adopted in this chapter to model the sighting rates. Also, the Weibull distribution
can be derived theoretically as a form of Extreme Value Distribution. This may explain why
it has been used in the literature to model the k most recent sighting times of a species,
ordered from most recent sighting time to least recent sighting time (i.e T1 > T2 > ... > Tk)
(Smith & Weissman 1985; Hall et al. 1999; Roberts & Solow 2003; Solow 2005).

The mean certain and uncertain sighting rates, which change with time, can be obtained
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using Equation 1 as:

mc(t) = (t/σc)αc , t ≤ τE. (5)

mu(t) =


mu1(t) = (t/σu1)αu1 , t ≤ τE

mu1(τE) +mu2(t)−mu2(τE)

= (τE/σu1)αu1 + (t/σu2)αu2 − (τE/σu2)αu2 , t > τE.

(6)

Here τE > 0 is the extinction time and θ = (αc, αu1, αu2, σc, σu1, σu2, τE) is the vector of
parameters of the model, where α∗ and σ∗ refers to the shape and scale parameters of the
Weibull distribution. Here, ‘∗’ refers to either the certain sightings (c) or the uncertain
sightings before extinction (u1) or the uncertain sightings after extinction (u2). In this
work, we assume that these parameters are random variables that need to be estimated.

In what follows, we will be interested in determining α∗ in Equations 5 and 6 as it reflects
whether the sighting rate was increasing, decreasing or constant. Based on the value of α∗

the sighting rate λ∗(t) can be classified as follows using the rate functions given in Equations
3 and 4.

λ∗(t) =


decreasing, if α∗ < 1

constant, if α∗ = 1

increasing, if α∗ > 1

(7)

Now we discuss the development of the likelihood and show how the likelihood and prior
specification is used to obtain the posterior distribution of θ i.e., the vector containing all
parameters including τE the extinction time. Let T > 0, Kc > 0 and Ku > 0 be fixed
integers. Assume that there are Kc certain sightings in the time interval [0, τE) and Ku

uncertain sightings in the time interval [0, T ). Then, let Ku(τE) be the number of uncertain
sightings prior to extinction time τE. Dc = {yc1 , yc2 , ..., yKc} and Du = {yu1 , yu2 , ..., yKu}
denote the two types of observed sightings, certain and uncertain, while yi indicate the time
of the sighting. Then using the likelihood function and the prior distributions, the posterior
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distribution of the parameters of interest can be expressed as:

P (θ|Dc, Du) ∝ L(Dc, Du|θ)P (θ), (8)

where P (θ|Dc, Du) is the posterior distribution of θ given the data Dc, Du; P (θ) represents
all the prior distributions for model parameters; and L(Dc, Du|θ) is the likelihood function
of the model.

To build the full likelihood, we use the result that the likelihood of sighting times D =
{y1, y2, ..., yK} arising from a non-homogeneous Poisson process with rate λ(t) over the period
[0, T ) is ∏K

i=1 λ(yi|θ) exp[−m(T |θ)]. Thus, the full likelihood with the presence of a change-
point takes the following form (see, for instance, Achcar et al. (2010); Guarnaccia et al.
(2015)):

L(Dc, Du|θ)

= L(Dc|θ)× L(Du|θ)

=
[ Kc∏
i=1

λc(yci
|θ) exp[−mc(τE|θ)]

]
×
[Ku(τE)∏

j=1
λu1(yuj

|θ) exp[−mu1(τE|θ)]
]

×
[ Ku∏
j=Ku(τE)

λu2(yuj
|θ) exp[−(mu2(T |θ)−mu2(τE|θ))]

]

∝
[( αc
σαc
c

)Kc
Kc∏
i=1

(yαc−1
ci

) exp[−(τE/σc)αc ]
]

×
[( αu1

σαu1
u1

)Ku(τE) Ku(τE)∏
j=1

(yαu1−1
uj

) exp[−(τE/σu1)αu1 ]
]

×
[( αu2

σαu2
u2

)Ku−Ku(τE) Ku∏
j=Ku(τE)

(yαu2−1
uj

) exp[−((T/σu2)αu2 − (τE/σu2)αu2)]
]

(9)

where Ku(τE) is the number of uncertain sightings prior to extinction time (τE).

If there are only certain sightings, then the likelihood in Equation 9 can be significantly
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simplified into Equation 10, by setting L(Du|θ) = 1.

L(Dc|θ) =
[ Kc∏
i=1

λc(yci
|θ) exp[−mc(τE|θ)]

]

∝
[( αc
σαc
c

)Kc
Kc∏
i=1

(yαc−1
ci

) exp[−(τE/σc)αc ]
] (10)

Accordingly, the posterior distributions can be obtained using Equation 8 along with the
same prior distributions defined earlier for αc, σc and τE. Similar modification can be made
to arrive at a model that does not assume a change-point for uncertain sightings by fitting a
single non-homogeneous Poisson process for the uncertain sightings (i.e. λu2 = λu1). In such
a situation, the uncertain sightings are independent of the extinction time. Thus, inclusion
of uncertain sightings does not provide additional information about extinction. However,
for species sighting data, the change-point assumption is important since it is possible to
have both valid and invalid uncertain sightings prior to extinction, but only invalid ones
afterwards.

For the study that follows, the prior distributions for shape (αc, αu1 and αu2) and scale (σc,
σu1 and σu2) parameters are chosen to be non-informative Uniform distributions, i.e. Unif(0,
1000), giving the sighting rates a vague behaviour. However, if there is prior knowledge
about the sighting rates, the prior distributions can be modified accordingly. Following
previous Bayesian approaches in the literature (Solow et al. 2012; Solow & Beet 2014), the
prior distribution for τE is chosen to be an exponential distribution:

p(τE|γ) = γ exp(−γτE) (11)

In order to use a weakly informative prior for τE, the rate parameter γ in Equation 11 is
chosen as 0.005 in the exponential distribution. This prior specification reflects an expected
extinction time to be 200 years with a variance of 40,000 years. Along with these priors
and likelihood function defined in Equation 9, we obtain posterior distributions for model
parameters including, most importantly τE, via the Markov Chain Monte Carlo (MCMC)
algorithm using Equation 8. In addition to τE the extinction time, the posterior distribution
of the parameter α is of particular interest, as it reflects whether the sightings were increasing,
decreasing or constant.
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In the MCMC implementation, we generated 4 chains each with 10,000 thinned iterations
for the black-footed ferret and for the Ivory-billed woodpecker. Compared to the Ivory-billed
woodpecker, the black-footed ferret sighting record resulted in highly auto-correlated MCMC
chains. Thus, a thinning value of 360 and 13 were used to reduce the auto-correlation in
chains for the black-footed ferret and Ivory-billed woodpecker, respectively. These numbers
were obtained by going through a trial and error process to obtain less auto-correlated chains.
MCMC diagnostic checks were carried out in respect to convergence, auto-correlation and
effective sample size and no indication of any problem for any parameter (e.g. τE, αc, σc
etc.) was observed. Detailed descriptions on the diagnostics are not discussed here as it is
out of the scope of this paper. However, such details can be found in the supplementary
materials of our recent paper (Kodikara et al. 2020).

3 Results
In this section the model outlined above is first applied to a simple example with only certain
sightings using the data collected for the black-footed ferret. This is then followed by the
example of the Ivory-billed woodpecker (IBW) where both certain and uncertain sightings
are included in the modeling approach.

3.1 Black-footed ferret
The black-footed ferret (Mustela nigripes), found in the State of Wyoming, USA, was once
thought to be extinct, but it was successfully reintroduced back into the wild after captive
propagation (Dobson & Lyles 2000; Wisely et al. 2008). Before this reintroduction, Solow
(1993) used the sightings of the black-footed ferret as a method for testing extinction in
declining populations. The sighting record consists of 28 certain sightings over the period
January 1972 to December 1990 (Solow 1993). Even though the black-footed ferret was rein-
troduced back into the wild, the sightings published in Solow (1993) are useful for studying
extinction in a declining population (Jarić & Ebenhard 2010).

The posterior distribution of the extinction time τE is plotted in Figure 2a and the 95%
Highest Density Interval (HDI) for the posterior extinction year is given in Table 1. In these
calculations, as similar to Solow (1993), the time unit was taken to be a month. According
to Table 1, the median extinction year is 1985 for the black-footed ferret. The 95% HDI
upper bound for τE was found to be 1987 and hence we could infer that the species is highly
likely to be extinct by the sighting end period (i.e. December 1990). This inference agrees
with the finding of Solow (1993), where his method provides moderately strong evidence
against the existence of the black-footed ferret. In addition, the posterior distribution for
parameter αc has a 95% HDI between 0.45 and 1 indicating that the certain sightings have a
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high tendency to decline from the beginning of the observation period as suspected by Solow
(1993).

(a) (b)

Figure 2: Posterior distribution plots for the model parameters τE and αc for black-footed
ferret. Black solid line above x-axis shows the 95% HDI for the posterior distribution. (a)
Posterior distribution of τE. (b) Posterior distribution of αc.

Table 1: Summary of the posterior distributions of τE and αc for the black-footed ferret

95% HDI Low median 95% HDI High
τE|S 1984.75 1985.23 1987.28
αc|S 0.45 0.71 1.01

3.2 Ivory-billed woodpecker
The Ivory-Billed Woodpecker (IBW; Campephilus principalis) was the third largest wood-
pecker in the world. It is believed that the IBW went extinct in the middle of the twentieth
century. To illustrate the use of our model when there are both certain and uncertain sight-
ings, we analyzed the sighting record of the IBW given in Elphick et al. (2010). The same
sighting data was used in Solow et al. (2012) and Solow & Beet (2014) to infer extinction
about IBW. However, these approaches assumed that the certain sightings, valid uncertain
sightings and invalid uncertain sightings follow independent stationary Poisson processes
with constant rates. We relax this assumption and suppose the sightings could evolve ac-
cording to a non-homogeneous Poisson process. Similar to Solow & Beet (2014), we assume
that all sightings based on physical evidence are certain, and all sightings that are not based
on physical evidence are uncertain.
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Table 2: Summary of the posterior distribution of τE for IBW

95% HDI Low median 95% HDI High
τE|S 1939 1950 1956

Figure 3: Posterior distribution plot of τE for the IBW. Black solid line above x-axis shows
the 95% HDI for the posterior distribution.

The posterior distribution of τE is plotted in Fig. 3 and the 95% HDI for the posterior
extinction year is given in Table 2. According to Table 2, the median extinction year is 1950
with a 95% upper bound in 1956. Also, the extinction time τE is a bimodal distribution
(see Fig. 3), where the modes are approximately located at 1944 and 1952. In the next
paragraphs we explain the reason for this bimodal result.

In the model, extinction time was formulated as a termination point for certain sightings and
a change-point for uncertain sightings (see Fig. 1). Hence, the inference about extinction
time is significantly influenced by the last certain sighting and by any rate change in the
uncertain sightings. For IBW, the first mode (1994) is associated with the last certain
sighting while the second mode (1952) arises due to the change point of the uncertain sighting.
According to Fig. 4, the first mode in year 1994 is closer to the last certain sighting in
1939. The sudden ending of certain sightings at this year indicate its possible influence over
extinction time. On the other hand, the second mode in 1952 is another possible change
point as the rate of uncertain sightings increased until 1952 and then changed its behaviour
afterwards. Thus, 1952 becomes another possible candidate for extinction time.
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1944

19521897 2010

Figure 4: Graphical representation of IBW certain sightings and uncertain sightings. Green
represents the years where there are certain sightings while red represents the years of un-
certain sightings.

Figure 5: Posterior distribution plot of τE for the IBW with change-point and homogeneous
rate assumptions. Black solid line above x-axis shows the 95% HDI for τE.

In order to further investigate the bimodal behaviour, the IBW sighting record was modelled
using a homogeneous Poisson process for uncertain and certain sightings. The model can be
obtained by allowing αc = αu1 = αu2 = 1 in Equation 9. As seen in Fig. 5, when the rate of
certain and uncertain sightings are assumed to have a constant sighting rate, while allowing
for a change-point in uncertain sightings, the posterior distribution for τE is unimodal with
its mode being closer to the first mode in Fig. 3. This results indicates that the bimodal
distribution in Fig. 3 is a result of the heterogeneous rate assumption in uncertain sightings.

12



(a)

(b) (c)

Figure 6: Posterior distribution plots for the model parameters αc, αu1 and αu2 for IBW.
Black solid line above x-axis shows the 95% HDI for the posterior distribution. (A)
Posterior distribution of αc. (B) Posterior distribution of αu1. (C) Posterior distribution of
αu2.

Other model parameters of interest are the shape parameters αc, αu1 and αu2, which reflect
if and how the sighting rates change over time. Fig. 6a shows that the 95% HDI for αc is
(0.37, 0.94). Thus, the null hypothesis that αc ≥ 1 can be rejected, or in other words we
can be 95% confidence that αc is less than 1. This implies that the certain sighting rate
declined over the pre-extinction period for IBW. Similar inferences can be made on αu1 and
αu2. The 95% HDI for αu1 and αu2 are (1.35,3.46) and (0.31, 1.92), respectively (see Fig.
6b and Fig. 6c). Since the lower bound of αu1 is greater than 1, the uncertain sighting rate
before extinction (i.e. τE) increased over time. In contrast, the 95% HDI for αu2 contains
1 inside its interval, and thus implies a constant (invalid) sighting rate after extinction for
IBW.

Using Fig. 7, let us now examine the impact of model assumptions on the cumulative
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posterior extinction probability.

Figure 7: Time series plot of the posterior extinction probability under different assumptions
for the IBW.

The cumulative posterior extinction probability evaluated at a considered year (say ti) is the
area under the posterior distribution of τE from zero to ti in Fig. 3 (for the case of uncertain
sightings). Through Fig. 7 we can discuss the importance of model assumptions as well as
the uncertain sightings on the posterior extinction probability. For instance, let us assume
that ecologists are interested in inferring whether the IBW was extinct by a given year, say
1948. In such a situation, if one uses only certain sightings with a constant sighting rate
assumption, then the posterior extinction probability for IBW by 1948 is 0.97 (i.e., P (τE ≤
1948|Dc, αc = 1) = 0.97). But if the uncertain sightings were included with a constant
rate assumption then the probability is reduced to 0.75 (i.e., P (τE ≤ 1948|Dc, Du, αc =

14



1, αu1 = 1, αu2 = 1) = 0.75). In the latter case, the analysis indicates that the inclusion
of uncertain sightings still favours extinction but with a lower probability than before. The
same probability is further reduced to 0.38 when the constant rate assumption is relaxed by
allowing the process to be non-homogeneous (i.e., P (τE ≤ 1948|Dc, Du) = 0.38). Under this
scenario the extinction of IBW by 1948 is questionable. Through this simple example it is
clear how each model assumption will produce different posterior extinction probabilities.

4 Discussion
In this paper, the work of Solow & Beet (2014) was extended for predicting extinction
when the sightings, both certain and uncertain, follow non-homogeneous Poisson processes.
It was assumed that certain and uncertain sightings evolve according to two independent
non-homogeneous Poisson processes between (0, τ). Over the period (τ, T ), the uncertain
sightings follow a different non-homogeneous Poisson process. The new approach can be used
to test if the sighting rates for certain and uncertain sightings were decreasing, increasing or
constant over the studied time period.

The model was applied on two real-world case studies covering a certain sighting only scenario
(the black-footed ferret), and a case where both certain and uncertain sightings appear in the
sighting record (the IBW). The null hypothesis that the black-footed ferret and the IBW is
extant by the sighting end period (i.e 1990 and 2010) was rejected and our statistical analysis
suggests that the black-footed ferret and the IBW went extinct in the 1980s and 1950s,
respectively. In addition to these conclusions, the posterior distributions of αc suggested
that both these species had a declining certain sighting rate pre-extinction, possibly due
to decline in the population as the species reach extinction. The uncertain sighting rate,
however, indicated an increase before extinction for IBW which probably reflects the media
and ecological attention received (U.S. Fish and Wildlife Service 2010).

The main advantage of the method described in this paper is that it does not have any under-
lying assumptions on the sighting rates. Through Fig. 7, we demonstrate the impact of these
assumption on the posterior extinction probability using IBW sighting data. For example,
if one assumes a constant sighting rate for both certain and uncertain sightings, then the
cumulative posterior extinction probability is over estimated as shown in Fig. 7. In contrast
if the true certain sighting rate was increasing before extinction then assuming a constant
rate would under-estimate the true extinction probability. Hence the inferences made under
constant rate assumption will be inaccurate if the true underlying rate is heterogeneous.

Data accessibility. IBW sighting data used in this article are available at
https://doi.org/10.5281/zenodo.3766207.
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