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Abstract14

15

1. Species sighting records are combined with statistical models to infer whether an16

endangered species might have become extinct or whether instead it has just gone17

unobserved for a lengthy period of time. The challenging part in developing these18

models lies in the inclusion of uncertain sightings.19

2. We propose a Bayesian hierarchical approach to infer the 1 extinction time of a20
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species based on historical sighting records which may be either certain or un-21

certain. The posterior distribution for extinction time is evaluated using the22

likelihood of sighting data and non informative priors for model parameters. All23

the models discussed in this paper are implemented in JAGS, a program for ana-24

lyzing Bayesian models using Markov Chain Monte Carlo (MCMC) simulation.25

3. A general methodology is presented, and it is then applied to the sighting record of26

the Ivory-billed Woodpecker (IBW) (Campephilus principalis) . It was found that27

the IBW most likely went extinct between 1940 and 1945, a little after the date28

of the last certain sighting. Interestingly, for the IBW dataset, the inclusion of29

uncertain sightings did not significantly change the inference about the extinction30

date. We explore the important role of the last certain sighting when estimating31

the extinction date.32

4. When estimating the extinction date of a species it is important to understand33

the role of the last certain sighting. If there are no uncertain sightings in the34

sighting record then the species is highly likely to go extinct soon after the last35

certain sighting. But when there are uncertain sightings a species is likely to go36

extinct closer to the Let’s discuss this last certain sighting or to the time point37

where the uncertain sightings drops to a lower rate. Applying our analysis to38

a real dataset, we find that the IBW most likely went extinct in 1940, despite39

recent controversial claims that it was sighted in 2004.40

Key words: Bayesian modeling, Extinction probability, Highest posterior density interval,41

Markov Chain Monte Carlo, Sighting record, Uncertain sightings42

1 Introduction43

Clear signs are emerging that any further loss of critically endangered species might tip the44

world towards another mass extinction event (Barnosky et al. 2011). These extreme events45

have likely only occurred five times in the past 540 million years (Barnosky et al. 2011; Pimm46
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et al. 2014). As such, there is concern that the diversity and complexity of life on Earth47

may well again be on a dangerous downward spiral. It also highlights the need to correctly48

monitor and model the current extinction status of species on planet Earth and carefully49

assess the fragility of potentially endangered species. An incorrect classification of a species50

as extinct can lead to failure in conserving a threatened species (Lee et al. 2014; Thompson51

et al. 2013). On the other hand, it is also undesirable to classify a species as extant when it52

is actually extinct, as it can lead to misallocation of research energy and funds (Thompson53

et al. 2013; Lee et al. 2014; Akçakaya et al. 2017; Keith et al. 2017).54

In practice, it is extremely difficult to determine whether a species has gone extinct or has55

just remained unobserved (Akçakaya et al. 2017; Keith et al. 2017; Thompson et al. 2017).56

But it only requires one certain sighting to prove that a species is extant. A recent example of57

an erroneously inferred extinction is the Aldabra banded snail Rhachistia aldabrae. Gerlach58

(2007) announced that these snails went extinct as a result of short-term climate change,59

as no recent shell or live specimen was sighted after 1997. This was the case even after60

systematic and exhaustive surveys specifically aimed at finding the snail in 2005 and 2006.61

Nevertheless, the snail surprisingly reappeared in 2014, when the rediscovery was publicised62

by the Seychelles Island Foundation (Battarbee 2014).63

Historical sighting records are often the only available data for rare or poorly studied species,64

and thus the main information available to work with for quantitative assessment of extinc-65

tion. Palaeobiologists first introduced the general idea of using sighting records to estimate66

the time of extinction (Strauss & Sadler 1989; Marshall 1990), while Solow (1993) applied67

it for the first time within the field of conservation biology. Solow (Solow 1993) developed a68

Bayesian approach to derive an equation for expressing the survival probability of a species69

based on sightings over a series of time units.70

Rivadeneira et al. (2009) pointed out that most of the statistical methods for assessing71

species extinction before 2009 assumed that all sightings were valid with complete certainty.72
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However, the conclusions about extinction are sensitive to the inclusion or exclusion of73

sightings that may be “uncertain." This spurred modellers to examine better what happens74

when uncertainty might be attached to the validity of sightings. Roberts et al. (2010)75

noted that inferences from models including uncertain sightings differ significantly from those76

obtained by models omitting this information. Several studies were developed to incorporate77

probabilities of reliability or sighting validity for each sighting into the model development78

(Jarić & Roberts 2014; Lee et al. 2014; 2015; 2017), as well as expert opinion (Lee et al.79

2015).80

When analyzing the different approaches in (Solow & Beet 2014), it was found that the81

final inferences made were particularly sensitive to the different ways of modeling uncertain82

sightings (Kodikara et al. 2018) as suspected by (Solow & Beet 2014). This indicates the need83

to gain a deeper understanding and familiarity with models that include uncertain sightings.84

There has been recent interest in developing frameworks that incorporate uncertain sightings85

(Solow et al. 2012; Solow & Beet 2014; Thompson et al. 2017).86

Our approach is based on working with posterior probabilities rather than the Bayes factor87

in order to make inferences. There are a few Bayesian studies that calculate the posterior88

probability of extinction (Alroy 2014; 2016; Solow 2016a) and none of these have dealt with89

uncertain sightings so far. The models developed here are implemented using JAGS software,90

which uses a computational Bayesian approach based on MCMC simulations. This approach91

has become very popular of late, in particular with the availability of statistical packages,92

such as JAGS, WinBUGS etc.93

The remainder of this paper is organized in the following way. Section 2 presents the devel-94

opment of the models. Section 3 explores the models using the sighting records of the IBW.95

Section 4 examines the sensitivity of the results to uncertain sightings. The paper concludes96

with the discussion in Section 5.97
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2 Model Development98

Consider a historical sighting record S of a species in which n sightings occurred in years99

S = (s1, ..., sn), as recorded over the full observation period t = 1, . . . , T years. If the species100

went extinct during the observation period, then we designate τE as the date of the first101

year following extinction. In this paper, a hierarchical Bayesian approach is developed to102

infer the extinction time τE for a species based on its sighting record S. From this it is103

possible to infer the probability a species went extinct during the observation period, that104

is p(τE ≤ T |S).105

Sightings in S can either be certain or uncertain and this is something that has to be fully106

taken into account. Note that all certain sightings are taken to be valid given the species107

has been correctly identified on each sighting date. However, uncertain sightings can either108

be valid or invalid (since now the species is sometimes incorrectly identified).109

Bayesian inference is used to find the posterior probability distribution for parameters of110

interest (eg., τE), based on prior knowledge of the parameter combined with a statistical111

model of the observed data (likelihood function). This requires working with the well known112

Bayesian formula:113

posterior ∝ likelihood× prior (1)

Here the prior is our initial knowledge about the parameter of interest. While the posterior114

is a revised updated version of the prior for which the observed data has been into account115

via the likelihood.116

Two distinct modeling approaches are developed. The first is appropriate for sighting records117

that consist of certain sightings only. The second includes uncertain sightings into the model.118
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We next discuss the development of the likelihood in each of these models. From there we119

show how the likelihood and prior specification is used to obtain the posterior distribution120

according to Equation 1.121

2.1 Model 1 - Certain sightings only122

Formulation of the likelihood123

First consider a historical sighting record S of a species in which all n sightings recorded124

are certain and occur in years S = C = (c1, ..., cn). Thus cn is the time of the last certain125

sighting. The model assumes that there is a probability pc that an extant species can be126

sighted in any given year. Our goal is to infer the distribution of extinction times τE, based127

on the sighting record data S. Clearly, τE must be greater than the last certain sighting cn.128

When there are nc certain sightings, the likelihood for the sighting record S given τE and pc129

is easily seen to be:130

p(S|τE, pc) = pnc
c (1− pc)(τE−1−nc). (2)

Since the full sighting record occurred in the period (0, T ), the upper bound for τE (the year131

following extinction) should be T + 1. Hence, the likelihood of S given τE > T is found132

by evaluating p(S|τE = T + 1, pc). Considering all situations, Equation 2 for the likelihood133
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should be generalized as follows:134

p(S|τE, pc) =



0, τE ≤ cn

pnc
c (1− pc)(τE−1−nc), cn < τE ≤ T

pnc
c (1− pc)(T−nc), τE > T.

(3)

The basic set up of Model 1 is identical to the one proposed by Alroy (2014) and the asso-135

ciated paper of Solow (2016b). In the latter study, instead of treating the yearly sighting136

probability pc as a parameter of interest, an approach was developed to completely elim-137

inate pc by treating it as a nuisance parameter, resulting in an analytical solution for the138

posterior extinction probability. However, for the reasons that will become evident shortly,139

it is instructive and useful to include pc.140

Prior distributions of model parameters141

Assuming that an extant species can become extinct (E) at the beginning of each year with142

probability θ, the number of years until the species becomes extinct τE is characterized by a143

geometric distribution with parameter θ.144

p(τE|θ) = (1− θ)τE−1θ, τE = 1, 2, ... (4)
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The parameter pc and hyper-parameter θ are assumed to have a standard uniform distribu-145

tion with the following probability density function,146

p(θ) = 1, 0 < θ < 1. (5)

and

p(pc) = 1, 0 < θ < 1. (6)

Based on this framework, we now evaluate the posterior distribution of τE.147

Posterior distribution148

Applying Bayes’ rule defined in Equation 1, the posterior distribution for the parameters of149

interest (τE, pc and θ) is written as the product between the likelihood, priors and hyper-prior150

as follows:151

p(τE, pc, θ|S) ∝ p(S|τE, pc)p(τE|θ)p(θ)p(pc) (7)

where152

p(τE, pc, θ|S) = posterior distribution for τE, pc and θ given the observed data S;153

p(S|τE, pc) = likelihood function for S given τE and pc;154

p(τE|θ) = prior distribution of τE given the hyper-parameter θ and155

p(θ) = hyper-prior distribution of θ.156
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p(pc) = prior distribution of pc.157

158

According to Equation 7, we obtain the MCMC samples for τE using JAGS. The model159

developed in JAGS is specified according to the likelihood function defined in Equation160

3 along with the prior and hyper-prior distributions in Equations 4, 6 and 5. Since τE161

is a discrete random variable, the posterior distribution of τE describes the probability of162

occurrence of each value of τE. By summing all probabilities that are less than or equal to163

T in the posterior distribution of τE, we can obtain the posterior probability of p(τE ≤ T |S)164

which can be expressed by the following formula:165

p(τE ≤ T |S, θ, pc) = p(τE ≤ T |S, θ, pc)
p(τE|S, θ, pc)

=
∑T
τE=sn+1 (1− pc)(τE−1)(1− θ)τE−1θ∑T

τE=sn+1(1− pc)(τE−1)(1− θ)τE−1θ + (1− pc)T
∑∞
τE=T+1 (1− θ)τE−1θ

.

(8)

A similar formulation was used in (Fader et al. 2010; Thompson et al. 2013; Alroy 2014).166

The method discussed in Thompson et al. (2013) uses a simple estimate for the probability167

of sighting a species when it is extant, i.e., dividing the number of years in which there are168

sightings by the time of the last sighting (p̂c = n
tn
). Our approach, goes beyond this simple169

method and estimates the parameter pc using a Bayesian approach.170

2.2 Model 2 - Certain and uncertain sightings171

Many historical data sets of rare or extinct species contain sightings that are to some degree172

uncertain. While physical evidence of a species is usually taken to indicate that the species173

was certainly present during a survey, other evidence is often less certain. Suppose that174

the certain sightings occur in years C = (c1, ..., cn) and uncertain sightings occur in years175
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U = (u1, ..., un), where cn and un represents the time of the last certain and last uncertain176

sighting respectively. Then the sighting record S is a combination of both C and U records.177

Our work assumes that uncertain sightings can only be recorded in years in which there178

are no certain sightings. In other words there is some “censorship” process that masks the179

recording of uncertain sightings.180

A likelihood for the sighting record S can be constructed similar to the “certain sighting181

only” model that takes into account the censorship process. Consider first the case cn <182

τE ≤ T , Then, in any year before extinction t < τE, a sighting is considered an outcome of183

a generalized Bernoulli trial where either a certain sighting or an uncertain sighting or no184

sighting is recorded. For any year after extinction (t ≥ τE), all uncertain sightings are invalid.185

Thus a sighting is considered a Bernoulli trial with either an invalid uncertain sighting with186

probability pui, or no sighting with probability 1− pui, as outcomes.187

Next we discuss how to allow for the censoring process (i.e., no single year can have both188

certain and uncertain sightings). Recall that for an extant species. the probability of re-189

cording a certain sighting in any year during is pc. Also, it is natural to assume that valid190

uncertain sightings and invalid uncertain sightings occur independently according to some191

probabilities, say puv and pui. Thus the probability of having an uncertain sighting before192

τE is pu = puv(1 − pui) + pui(1 − puv) + puv ∗ pui. Recall that uncertain sightings are only193

recorded if there are no certain sightings. Because of this “censoring” process, even though194

the probability of an uncertain sighting is pu, the probability of recording it is (1 − pc)pu.195

The probability of not recording an uncertain sighting is (1− pc)(1− pu). (If one prefers to196

consider the model without the censoring process then the above defined probabilities should197

be modified accordingly.)198

The certain sighting record C consists of nc sightings, all of which occur prior to τE as there199

cannot be any certain sighting after extinction. Let Nu be the total number of uncertain200

sightings. The uncertain sighting record tu consists of nu(τE) sightings prior to τE of un-201
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certain validity, followed by Nu − nu(τE) sightings after τE all of which must be invalid.202

When τE > T , then nu(τE) = Nu. Considering all situations described above, the likelihood203

p(S|τE, pc, pui, puv) can be summarized as:204

p(S|τE, ...) =



0, τE ≤ cn

pnc
c ∗ ((1− pc)pu)nu(τE)

∗((1− pc)(1− pu))τE−1−nc−nu(τE) cn < τE ≤ T

∗pNu−nu(τE)
ui ∗ ((1− pui))T−(τE−1)−(Nu−nu(τE)),

pnc
c ∗ ((1− pc)pu)Nu

∗((1− pc)(1− pu))T−nc−Nu τE > T.

(9)

The key notations used in Equation 9 are summarised in Table 1. In Equation 9, we have205

used the result that the likelihood of counts n1, n2 and n3 arises from a generalized Bernoulli206

trial with probabilities p1, p2 and p3 (i.e. p1 + p2 + p3 = 1) is pn1
1 ∗ pn2

2 ∗ pn3
3 .207
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Notation Description

τE Time or date of first year following extinction.

cn The date of the last certain sighting.

nc The total number of certain sightings.

Nu The total number of uncertain sightings.

nu(τE) The number of uncertain sightings prior to τE.

pc The probability of having a certain sighting in each year.

puv The probability of having a valid uncertain sighting in each year.

pui The probability of having an invalid uncertain sighting in each year.

Table 1: Notation used in model development

Note that once Model 2 is operational, it is simple to run Model 1 by setting the uncertain208

sighting probabilities to zero (i.e. pui = 0 and ppuv = 0).209

As discussed in the previous Subsection, τE was modelled as a geometric distribution with210

parameter θ, where the prior for θ was taken to be a uniform(0,1) distribution. All the other211

parameters (i.e pc, pui and puv) were also assigned a standard uniform prior. Using these prior212

specifications along with the likelihood in Equation 9, we obtained posterior distributions213

for all model parameters including, most importantly, τE. In any MCMC implementation,214

we generated 4 chains each with 130,000 iterations and a burn-in period equal to 60,000215

iterations. Also, a thinning value of 13 was used to reduce the auto correlation in chains and216

hence 10,000 thinned steps were generated in each iteration.217

3 Results218

The Ivory Billed Woodpecker (IBW) (Campephilus principalis), is one of the largest wood-219

peckers in the world but may have recently gone extinct. In the past decade several sightings220

of the IBW were reported but with uncertain validity, as it was impossible to obtain a clear221
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photograph or other conclusive evidence of the bird (Collins 2017). A highly controversial222

uncertain sighting was recorded in 2004, and it was then argued that the IBW had been223

rediscovered. But whether the sighting was from the IBW or the Pileated Woodpecker224

(Dryocopus pileatus) is still open to debate (Sibley et al. 2007).225

We proceed to analyse the sighting record data of the IBW provided in (Elphick et al. 2010)226

(see Supplementary Material (S1)), which gives 68 sightings throughout the period 1897 to227

2009. Each of these sightings was classified into one of three different sighting classes.228

1. Physical Evidence (PE) - e.g., museum specimens, but also uncontroversial photo-229

graphs, video, and sound recordings.230

2. Independent Expert Opinion (IEO) - evidence that experts deemed sufficiently docu-231

mented to confirm the record.232

3. Controversial sightings (CS) - sightings judged to lack firm evidence including any233

sighting for which there is published disagreement between experts.234

Following Solow & Beet (2014), we consider only sightings belonging to the Physical Evidence235

(PE) class as certain while all other evidence as uncertain.236

Model 1 - Certain sightings only237

We begin by analysing the IBW data with the certain sighting only model (Model 1), and238

therefore initially dismiss the uncertain sightings IEO and CS from the sighting record, and239

analyse only the certain PE sightings. This requires working with the likelihood in Equation240

3 and the prior distributions defined above. Then the posterior distribution of τE so obtained241

is summarized in Figure 1 and the 95% HDI for the posterior extinction year is given in Table242

2. According to Table 2, the median extinction year is 1940 with a 95% upper bound in 1944.243

Also the posterior probability that extinction occurred during the observation period is equal244

to one, which gives overwhelming support that extinction occurred during the observation245

13



period. Based on these findings we can infer that the IBW went extinct within a few years246

after the last certain (i.e PE) sighting in 1939.247

Table 2: Summary of the posterior distribution of τE using certain sightings only.

95% HDI Low median 95% HDI High

τE|S 1940 1940 1944

Figure 1: Posterior distribution plot of τE for the IBW for Model 1, where τE = 0 refers to
the year 1897. Black solid line above x-axis shows the 95% HDI for the posterior distribution.

(a) (b)

Figure 2: Posterior distribution plots for the model parameters for Model 1 excluding τE.
Black solid line above x-axis shows the 95% HDI for the posterior distribution. (a) Pos-
terior distribution of θ. (b) Posterior distribution of pc.

The posterior distributions of model parameters θ and pc are shown in Figure 2. Recall248
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that a non-informative prior (i.e uniform distribution) was used for all these parameters. As249

per Figure 2a, the posterior estimate for the yearly extinction probability θ for the IBW is250

θ=0.02. Also, according to Figure 2b, the posterior estimate of pc, which is the probability251

for recording a certain sighting is pc=0.5, with a 95% HDI between 0.3 and 0.6.252

Model 2 - Certain sightings and uncertain sightings253

In Model 2, we follow Solow & Beet (2014) and assume that all PE sightings are certain,254

and all other sighting evidence (i.e IEO and CS) uncertain. We thus use the likelihood in255

Equation 9. The posterior distribution of τE is plotted in Figure 3 and the 95% HDI for the256

posterior extinction year is given in Table 3. According to Table 3, the median extinction257

year is 1940 with a 95% upper bound in 1945. Similar to Model 1, we can infer that the IBW258

went extinct within a few years of the last certain (i.e PE) sighting in 1939. Our findings259

contradict the results from a recent paper which predicts the extinction year for IBW to be260

much closer to the sighting end point in 2009 (Brook et al. 2019). Interestingly, the inference261

made concerning τE under Model 1 and Model 2 seems almost identical. Hence for the IBW262

sighting record, the inclusion of uncertain sightings does not affect the conclusion of the263

model, although this property is not always guaranteed (see Section 4).264

Table 3: Summary of the posterior distribution of τE

95% HDI Low median 95% HDI High

τE|S 1940 1940 1945
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Figure 3: Posterior distribution plot of τE for the IBW for Model 2, where τE = 0 refers to
the year 1897. Black solid line above x-axis shows the 95% HDI for the posterior distribution.

(a) (b)

(c) (d)

Figure 4: Posterior distribution plots for the model parameters for Model 2 excluding τE.
Black solid line above x-axis shows the 95% HDI for the posterior distribution. (a) Pos-
terior distribution of θ. (b) Posterior distribution of pc. (c) Posterior distribution of puv.
(d) Posterior distribution of pui.
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The posterior distributions of other model parameters i.e θ, pc, pui and puv, are shown in265

Figure 4. By comparing Figure 4c with Figure 4d it is noticeable that the value of the mode266

it is clear that there is a higher chance of observing a invalid uncertain sighting rather than267

a valid uncertain sighting. Also, the variability in the invalid uncertain probability is much268

less compared to the variability of the valid uncertain probability. Both Model 1 and Model269

2 produce similar posterior distributions for for the yearly extinction probability θ and pc.270

Treating uncertain sightings as certain271

As an experiment, we now analyse the IBW data, treating all sightings (PE, IEO and CS)272

as certain sightings and just making use of Model 1. Under this assumption, the last certain273

sighting cn is equal to the last (previously uncertain) sighting in 2007 and the total number274

of certain sightings is now equal to nc + Nu. Based on these new inputs, it was found that275

the posterior estimate (median) for the extinction year for the IBW is increased to the year276

2080 τE = 2080, which is completely different to our previous results, and would suggest277

that the IBW is extant, if there might be reason to believe that the CS and IEO data were278

actually certain.279

Diagnostic tests for MCMC Samples280

When using a Computational Bayesian approach it is important to carry out diagnostics281

checks to examine whether the quality of the MCMC chains are sufficient to provide an282

accurate approximation of the target distribution. In practice, the MCMC chains are often283

assessed through visual inspection of the trace plot, auto-correlation plot, shrink factor plot284

and marginal density plot. Addition to these visual inspections there are some numerical285

checks such as the effective sample size (ESS) and Monte Carlo standard error (MCSE)286

which are used to measure the accuracy of the chains. A full discussion on these tools can287

be found in (Kruschke 2014). Figure 5 illustrates these diagnostic checks for the parameter288
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θ using the IBW sightings.289

The trace plot in Figure 5a displays the values of the parameter θ (yearly extinction prob-290

ability), during the run-time of the chain. This plot is used to identify any signs of irregular291

orphaned chains that might arise in some unusual regions of the parameter space. The plot292

given in Figure 5a indicates overlapping chains suggesting no orphaned chains. The marginal293

density plot of θ (see Figure 5d) is a smoothed histogram of the values in the trace-plot.294

This plot is used to identify if all the chains suitably represent the posterior distribution.295

The density plot also indicates overlapping chains, which suggest good representativeness296

of the posterior distribution. The auto-correlation plot given in Figure 5b indicates a zero297

auto-correlation between the chain values, which means that the values in a chain change298

rapidly for each and every step. As such, the chains are less clumpy and provide reasonably299

independent samples from the parameter distribution indicating that there are no problems.300

Inspection of convergence can also be checked numerically through the shrink factor, shown301

here in Figure 5c. A shrink factor above 1.1 indicates concerns on the convergence of the302

chains (Kruschke 2014), something that is not an issue in this example.303
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(a) Trace plot for θ (b) Auto-correlation plot for θ

(c) Shrink factor plot for θ (d) Marginal density plot for θ

Figure 5: Illustration of MCMC Diagnostics. The trace plot, auto-correlation plot, shrink
factor plot and the marginal density plot outputted by JAGS. These plots are used to check
if the chains are well mixed and suitably represent the posterior distribution. Analysis is
based on data for the IBW (see text).

The density plot in Figure 5d displays the estimated 95% highest density interval (HDI) for304

each chain. The 95% HDI is a Bayesian credible interval, and values inside this interval have305

a total probability of 0.95. Because of the uncertainty in the parameter, HDI intervals for306

each chain will slightly differ from each other. The MCSE indicates the estimated standard307

deviation of the sample mean in the chain and an ESS value of at least 10,000 is desirable308

to have a reasonably accurate and stable estimate of the limits of the 95% HDI. As the ESS309

value for θ is around 40, 000(> 10, 000) (see Figure 5b), the estimates for θ will be stable310

and accurate.311

With the aid of Figure 5, we demonstrated how the MCMC chains generated for θ under312

Model 1 are sufficient to provide an accurate approximation for the target distribution.313

Similar diagnostic checks were carried out for all the model results presented in this paper314
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(Model 1/ Model 2) and no indication of any problem for any parameter (e.g. τE, pc, puv315

etc.) was observed. All of these Diagnostic figures are give in Supplementary Material S2316

and S3.317

4 Sensitivity Analysis318

In the previous section, we found that the inclusion of uncertain sightings changed the319

results of the IBW analysis very little compared to a model which omits them. Hence, it is320

important to see if this is a special case, or whether the uncertain sightings are generally non321

informative. To asses this we consider the three artificially generated sighting records shown322

in Figure 6. All thee time series have the same certain sighting history where it follows at323

a constant rate for the first 24 years of the 100 year observation record. While the first324

scenario has only certain sighting the second and the third includes uncertain sightings with325

different rates for the first 69 years.326

Figure 6: Posterior median extinction date and its 95% HDI for three artificially generated
sighting records between 0 and 100. The cells shaded in green represents certain sightings
while the red shades represent uncertain sightings. Also, the cells without any shade indicates
no sightings. For each of the sighting record the posterior median extinction date is indicated
from a pink dashed line and the 95% HDI interval in the blue region.

According to Figure 6 it is clear that the first two scenarios resulted in a median extinction327

date (shown by the pink dashed line) closer to the last certain sighting in year 24, while the328

third is father away and closer to the uncertain sightings change-point in year 64. A change-329

point can be defined as a point in time when the probability distribution of a sequence of330

sightings differs before and after the point. As per this definition the last certain sighting331
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can also be considered as a change-point. Theoretically, extinction should happen closer to332

one of these change points as the rates of sightings (i.e certain/ uncertain) will fall following333

extinction. When there is only certain sightings there is only one change-point and hence334

extinction is much likely to happen after the last certain sighting. Also, when the uncertain335

sightings continue at a high rate after the last certain sighting and then fall to a low rate prior336

to the end of the observation period the uncertain sightings become more informative (see337

scenario (iii)). But when the uncertain sightings occur at a low constant rate (scenario (ii))338

the change-point from uncertain sightings are not significant compared to the last certain339

sighting. Hence the result from scenario (ii) does not differ significantly from the scenario340

(i).341

5 Discussion342

In this study we present a Bayesian hierarchical approach to obtain the posterior distribu-343

tion for τE (the date of the first year following extinction) and to calculate the posterior344

probability that the species is extinct by the end point of the sighting record data. Our345

general model is intended for sighting records that contain both certain and uncertain sight-346

ings. In order to obtain the posterior distribution for τE, we use Markov Chain Monte Carlo347

(MCMC) sampling techniques implemented with JAGS in R. As a case-study, we infer the348

extinction time distribution of τE for the IBW from historical sighting records.349

In 2005, the IBW, which was thought to be extinct, received considerable attention after350

the announcement of its rediscovery in continental North America in the prestigious journal351

Science (Fitzpatrick et al. 2005). This announcement was based on a video clip analysis,352

which captured the species for a total of four seconds in 2004. However, the video had a353

number of imperfections, since images were blurred and pixelated owing to rapid motion,354

slow shutter speed, video interlacing artifacts, and the bird’s distance beyond the video355

camera’s focal plane (Fitzpatrick et al. 2005). Soon after the claim, Sibley et al. (Sibley356
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et al. 2007) concluded that the evidence strongly suggests that the bird in the video was a357

normal pileated Woodpecker rather than an IBW, reigniting the controversy of whether the358

IBW was extinct or extant. Recent work has shown how drone technology may be used to359

find the IBW (Collins 2018) and resolve this controversy.360

Our paper investigates another approach: using Bayesian statistical models to investigate361

whether the IBW is extinct. Two modelling approaches were presented. The first only dealt362

with historical records containing only certain sightings, while the second considered records363

that contain certain and uncertain sightings. We applied both approaches to the sighting364

data of the IBW assigning uniform priors to all model parameters. The null hypothesis that365

the IBW is extant by 2009 was rejected under both the certain sighting model (i.e Model366

1) and the combined certain/uncertain sighting model (i.e. Model 2). Thus our statistical367

analysis suggests that the IBW went extinct in the 1940’s, even when taking into account368

the uncertain sighting in 2006. Similar to our recent paper, the analysis highlighted the369

important role of the last certain sighting, especially when uncertain sightings are of low370

quality.371

Through an artificially generated sighting records it was shown that the extinction is most372

likely to happen either near to the last certain sighting or to the point where the uncertain373

sightings fall to lower rate. These two time points can also be refereed as a change-point.374

Extinction is highly likely to occur at a change-point because the rate of sightings falls375

following extinction. There is only one change-point when we consider a certain sighting only376

scenario and that is the last certain sighting. In this case, the relatively high rate of certain377

sightings prior to the last certain sighting and their absence after that makes the last certain378

sighting to be a change-point. But when there is both certain and uncertain sightings then379

the significant change-point can occur from either sighting types. For example the uncertain380

sightings becomes informative about extinction in a situation in which uncertain sightings381

continue at a high rate after the last certain sighting and then fall to a low rate prior to382
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the end of the observation period. In this situation the change-point is the point of time383

where the uncertain sighting rate changes. Interestingly the findings from our previous paper384

(Kodikara et al. 2018) also aligns with these findings where we showed that the two models385

developed in Solow and Beet (Solow & Beet 2014) were sensitive to different points. While386

their first model was sensitive to the last uncertain sighting, the second was sensitive to the387

last certain sighting. Hence extinction problem can be seen as a change-point analysis but388

this change-point will be dependent on the model assumptions. The findings from this paper389

can be used in a powerful manner in exploring extinction problems.390
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